HDMI From Wikipedia -Applications


Blu-ray Disc and HD DVD players[edit]

Blu-ray Disc and HD DVD, introduced in 2006, offer high-fidelity audio features that require HDMI for best results. HDMI 1.3 can transport Dolby Digital PlusDolby TrueHD, and DTS-HD Master Audio bitstreams in compressed form.[6](§7) This capability allows for an AV receiver with the necessary decoder to decode the compressed audio stream. The Blu-ray specification does not include video encoded with either deep color or xvYCC; thus, HDMI 1.0 can transfer Blu-ray discs at full video quality.[137]

The HDMI 1.4 specification (released in 2009) added support for 3D video and is used by all Blu-ray 3D compatible players.

The Blu-ray Disc Association (BDA) spokespersons have stated (Sept. 2014 at IFA show in Berlin, Germany) that the Blu-ray, Ultra HD players, and 4K discs are expected to be available starting in the second half to 2015. It is anticipated that such Blu-ray UHD players will be required to include a HDMI 2.0 output that supports HDCP 2.2.

Blu-ray permits secondary audio decoding, whereby the disc content can tell the player to mix multiple audio sources together before final output.[138] Some Blu-ray and HD DVD players can decode all of the audio codecs internally and can output LPCM audio over HDMI. Multichannel LPCM can be transported over an HDMI connection, and as long as the AV receiver implements multichannel LPCM audio over HDMI and implements HDCP, the audio reproduction is equal in resolution to HDMI 1.3 bitstream output. Some low-cost AV receivers, such as the Onkyo TX-SR506, do not allow audio processing over HDMI and are labelled as "HDMI pass through" devices.[139][140] Virtually all modern AV Receivers now offer HDMI 1.4 inputs and outputs with processing for all of the audio formats offered by Blu-ray Discs and other HD video sources. During 2014 several manufacturers introduced premium AV Receivers that include one, or multiple, HDMI 2.0 inputs along with a HDMI 2.0 output(s). However, not until 2015 did most major manufacturers of AV receivers also support HDCP 2.2 as needed to support certain high quality UHD video sources, such as Blu-ray UHD players.

Digital cameras and camcorders[edit]

As of 2012, most consumer camcorders, as well as many digital cameras, are equipped with a mini-HDMI connector (type C connector).

As of 2014, some cameras also have 4K capability and 3D, even some cameras costing less than US$900. It needs at least a TV/monitor with HDMI 1.4a port.[141]

Although often HD video capable cameras include an HDMI interface for playback or even live preview, the image processor and the video processor of cameras usable for uncompressed video must be able to deliver the full image resolution at the specified frame rate in real-time without any missing frames causing jitter. Therefore, usable uncompressed video out of HDMI is often called "clean HDMI".[142][citation needed]

Personal computers[edit]

PCs with a DVI interface are capable of video output to an HDMI-enabled monitor.[6](appx. C) Some PCs include an HDMI interface and may also be capable of HDMI audio output, depending on specific hardware.[143] For example, Intel's motherboard chipsets since the 945G and NVIDIA's GeForce 8200/8300 motherboard chipsets are capable of 8-channel LPCM output over HDMI.[143][144] Eight-channel LPCM audio output over HDMI with a video card was first seen with the ATI Radeon HD 4850, which was released in June 2008 and is implemented by other video cards in the ATI Radeon HD 4000 series.[144][145][146][147][148] Linux can drive 8-channel LPCM audio over HDMI if the video card has the necessary hardware and implements the Advanced Linux Sound Architecture (ALSA).[149] The ATI Radeon HD 4000 series implements ALSA.[149][150] Cyberlink announced in June 2008 that they would update their PowerDVD playback software to allow 192 kHz/24-bit Blu-ray Disc audio decoding in Q3-Q4 of 2008.[151] Corel's WinDVD 9 Plus currently has 96 kHz/24-bit Blu-ray Disc audio decoding.[152]

Even with an HDMI output, a computer may not be able to produce signals that implement HDCP, Microsoft's Protected Video Path, or Microsoft's Protected Audio Path.[144][153] Several early graphic cards were labelled as "HDCP-enabled" but did not have the hardware needed for HDCP;[154] this included some graphic cards based on the ATI X1600 chipset and certain models of the NVIDIA Geforce 7900 series.[154] The first computer monitors that could process HDCP were released in 2005; by February 2006 a dozen different models had been released.[155][156] The Protected Video Path was enabled in graphic cards that had HDCP capability, since it was required for output of Blu-ray Disc and HD DVD video. In comparison, the Protected Audio Path was required only if a lossless audio bitstream (such as Dolby TrueHD or DTS-HD MA) was output.[144] Uncompressed LPCM audio, however, does not require a Protected Audio Path, and software programs such as PowerDVD and WinDVD can decode Dolby TrueHD and DTS-HD MA and output it as LPCM.[144][151][152] A limitation is that if the computer does not implement a Protected Audio Path, the audio must be downsampled to 16-bit 48 kHz but can still output at up to 8 channels.[144] No graphic cards were released in 2008 that implemented the Protected Audio Path.[144]

The Asus Xonar HDAV1.3 became the first HDMI sound card that implemented the Protected Audio Path and could both bitstream and decode lossless audio (Dolby TrueHD and DTS-HD MA), although bitstreaming is only available if using the ArcSoft TotalMedia Theatre software.[157][158] It has an HDMI 1.3 input/output, and Asus says that it can work with most video cards on the market.[157][158][159]

Legacy interfaces such as VGA, DVI and LVDS have not kept pace, and newer standards such as DisplayPort and HDMI clearly provide the best connectivity options moving forward. In our opinion, DisplayPort 1.2 is the future interface for PC monitors, along with HDMI 1.4a for TV connectivity.

"Leading PC Companies Move to All Digital Display Technology, Phasing out Analog". Intel. December 8, 2010. Retrieved September 14, 2012.

In September 2009, AMD announced the ATI Radeon HD 5000 series video cards, which have HDMI 1.3 output (deep color, xvYCC wide gamut capability and high bit rate audio), 8-channel LPCM over HDMI, and an integrated HD audio controller with a Protected Audio Path that allows bitstream output over HDMI for AAC, Dolby AC-3, Dolby TrueHD and DTS Master Audio formats.[160][161][162]The ATI Radeon HD 5870 released in September 2009 is the first video card that allows bitstream output over HDMI for Dolby TrueHD and DTS-HD Master Audio.[162] The AMD Radeon HD 6000 Series implements HDMI 1.4a. The AMD Radeon HD 7000 Series implements HDMI 1.4b.[163]

In December 2010, it was announced that several computer vendors and display makers including IntelAMDDellLenovoSamsung, and LG would stop using LVDS (actually, FPD-Link) from 2013 and legacy DVI and VGA connectors from 2015, replacing them with DisplayPort and HDMI.[164][165]

On August 27, 2012, Asus announced a new 27 in (69 cm) monitor that produces its native resolution of 2560×1440 via HDMI 1.4.[166][167]

On September 18, 2014, Nvidia launched GeForce GTX 980 and GTX 970 (with GM204 chip) with HDMI 2.0 support. On January 22, 2015, GeForce GTX 960 (with GM206 chip) launched with HDMI 2.0 support. On March 17, 2015, GeForce GTX TITAN X (GM200) launched with HDMI 2.0 support. On June 1, 2015, GeForce GTX 980 Ti (with GM200 chip) launched with HDMI 2.0 support. On August 20, 2015, GeForce GTX 950 (with GM206 chip) launched with HDMI 2.0 support.

On May 6, 2016, Nvidia launched the GeForce GTX 1080 (GP104 GPU) with HDMI 2.0b support.[168]

Gaming consoles[edit]

Beginning with the seventh generation of video game consoles, most consoles support HDMI. Video game consoles that support HDMI include the Xbox 360 (1.2a), Xbox One (1.4b), Xbox One S (2.0a), Xbox One X (2.1), PlayStation 3 (1.3a), PlayStation 4 (1.4b), PlayStation 4 Pro (2.0a), Wii U (1.4), and Nintendo Switch (1.4a).

Tablet computers[edit]

Some tablet computers, such as the Microsoft SurfaceMotorola XoomBlackBerry PlayBook, Vizio Vtab1008 and Acer Iconia Tab A500, implement HDMI using Micro-HDMI (Type D) ports. Others, such as the ASUS Eee Pad Transformer implement the standard using mini-HDMI (type C) ports. All iPad models have a special A/V adapter that converts Apple's data line to a standard HDMI (Type A) port. Samsung has a similar proprietary thirty-pin port for their Galaxy Tab 10.1 that can adapt to HDMI as well as USB drives. The Dell Streak 5 smartphone/tablet hybrid is capable of outputting over HDMI. While the Streak uses a PDMI port, a separate cradle adds HDMI compatibility. Most Chinese-made tablets running Android OS provide HDMI output using a mini-HDMI (type C) port. Most new laptops and desktops now have built in HDMI as well.

Mobile phones[edit]

Many recent mobile phones can produce output of HDMI video via either a micro-HDMI connector or MHL output.[169][170][171][172][173][174][175] Some older phones may use SlimPort to achieve similar result.

Legacy compatibility[edit]

HDMI can only be used with older analog-only devices (using connections such as SCARTVGA, RCA, etc.) by means of a digital-to-analog converter or AV receiver, as the interface does not carry any analog signals (unlike DVI, where devices with DVI-I ports accept or provide either digital or analog signals). Cables are available that contain the necessary electronics, but it is important to distinguish these active converter cables from passive HDMI to VGA cables (which are typically cheaper as they don't include any electronics). The passive cables are only useful if you have a device that is generating or expecting HDMI signals on a VGA connector, or VGA signals on an HDMI connector; this is a non-standard feature, not implemented by most devices.

HDMI Alternate Mode for USB Type-C[edit]

The HDMI Alternate Mode for USB-C allows HDMI-enabled sources with a USB-C connector to directly connect to standard HDMI display devices, without requiring an adapter.[176] The standard was released in September 2016, and supports all HDMI 1.4b features such as video resolutions up to Ultra HD 30 Hz, and Consumer Electronic Control (CEC).[177] Previously, the similar DisplayPort Alternate Mode could be used to connect to HDMI displays from USB Type-C sources, but where in that case, active adapters were required to convert from DisplayPort to HDMI, HDMI Alternate Mode connects to the display natively.[178]

The Alternate Mode reconfigures the four SuperSpeed differential pairs present in USB-C to carry the three HDMI TMDS channels and the clock signal. The two Sideband Use pins (SBU1 and SBU2) are used to carry the HDMI Ethernet and Audio Return Channel and the Hot Plug Detect functionality (HEAC+/Utility pin and HEAC−/HPD pin). As there are not enough reconfigurable pins remaining in USB-C to accommodate the DDC clock (SCL), DDC data (SDA), and CEC – these three signals are bridged between the HDMI source and sink via the USB Power Delivery 2.0 (USB-PD) protocol, and are carried over the USB-C Configuration Channel (CC) wire.[176] This is possible because the cable is electronically marked (i.e., it contains a USB-PD node) that serves to tunnel the DDC and CEC from the source over the Configuration Channel to the node in the cable, these USB-PD messages are received and relayed to the HDMI sink as regenerated DDC (SCL and SDA signals), or CEC signals.[176]

HDMI Alt Mode, HDMI to USB Type-C pin mapping
HDMI Alternate Mode for USB Type-C pin mapping[176]

Relationship with DisplayPort[edit]

Dual-mode DisplayPort logo

The DisplayPort audio/video interface was introduced in May 2006. In recent years, DisplayPort connectors have become a common feature of premium[179] products—displays, desktop computers, and video cards; most of the companies producing DisplayPort equipment are in the computer sector. The DisplayPort website states that DisplayPort is expected to complement HDMI,[180] but as of 2016 100% of HD and UHD TVs had HDMI connectivity.[181] DisplayPort supported some advanced features which are useful for multimedia content creators and gamers (e.g. 5K, Adaptive-Sync), which was the reason most GPUs had DisplayPort. These features were added to the official HDMI specification slightly later, but with the introduction of HDMI 2.1 these gaps are already leveled off (with e.g. VRR / Variable Refresh Rate).

DisplayPort uses a self-clocking, micro-packet-based protocol that allows for a variable number of differential LVDS lanes as well as flexible allocation of bandwidth between audio and video, and allows encapsulating multi-channel compressed audio formats in the audio stream.[182][183] DisplayPort 1.2 supports multiple audio/video streams, variable refresh rate (FreeSync), Display Stream Compression (DSC), and Dual-mode LVDS/TDMS transmitters compatible with HDMI 1.2 or 1.4.[182][184][185] Revision 1.3 increases overall transmission bandwidth to 32.4 Gbit/s with the new HBR3 mode featuring 8.1 Gbit/s per lane; it requires Dual-mode with mandatory HDMI 2.0 compatibility and HDCP 2.2.[186][187]Revision 1.4 adds support BT.2020 color space and HDR10 extensions from CTA-861.3, including static and dynamic metadata.[188]

The DisplayPort connector is compatible with HDMI and can transmit single-link DVI and HDMI 1.2/1.4/2.0 signals using attached passive adapters or adapter cables.[189][182][189] The source device includes a dual-mode transmitter that supports both LVDS signals for DisplayPort and TMDS signals for DVI/HDMI. The same external connector is used for both protocols - when a DVI/HDMI passive adapter is attached, the transmitter circuit switches to TDMS mode. DisplayPort Dual-mode ports and cables/adapters are typically marked with the DisplayPort++ logo. Thunderbolt ports with mDP connector also supports Dual-mode passive HDMI adapters/cables. Conversion to dual-link DVI and component video (VGA/YPbPr) requires active powered adapters.[182][189]

The USB 3.1 Type-C connector is an emerging standard that replaces legacy video connectors such as mDP, Thunderbolt, HDMI, and VGA in mobile devices. USB-C connectors can transmit DisplayPort video to docks and displays using standard USB Type-C cables or Type-C to DisplayPort cables and adapters; USB-C also supports HDMI adapters that actively convert from DisplayPort to HDMI 1.4 or 2.0. DisplayPort Alternate Mode for USB Type-C specification was published in 2015. USB Type-C chipsets are not required to include Dual-mode transmitters and only support DisplayPort LVDS protocol, so passive DP-HDMI adapters do not work with Type-C sources.

DisplayPort has a royalty rate of US$0.20 per unit (from patents licensed by MPEG LA), although this claim is contested,[190] while HDMI has an annual fee of US$10,000 and a per unit royalty rate of between $0.04 and $0.15.[191]

HDMI has a few advantages over DisplayPort, such as ability to carry Consumer Electronics Control (CEC) signals, and electrical compatibility with DVI (though practically limited to single-link DVI rates).[185][192] Also, HDMI can sustain full bandwidth for up to 10 meters of cable length and there are certification programs to ensure this;[citation needed] DisplayPort cables, conversely, don't ensure full bandwidth beyond 3 meters,[193] however some active cables extend the distance to 15 meters at certain resolutions,[194] and specialist optical extender solutions exists to extend distances even farther by sending the signal over fiber optic cable.[195]

Relationship with MHL[edit]

Mobile High-Definition Link (MHL) is an adaptation of HDMI intended to connect mobile devices such as smartphones and tablets to high-definition televisions (HDTVs) and displays.[196][197] Unlike DVI, which is compatible with HDMI using only passive cables and adapters, MHL requires that the HDMI socket be MHL-enabled, otherwise an active adapter (or dongle) is required to convert the signal to HDMI. MHL is developed by a consortium of five consumer electronics manufacturers, several of which are also behind HDMI.[198]

MHL pares down the three TMDS channels in a standard HDMI connection to a single one running over any connector that provides at least five pins.[198] This lets existing connectors in mobile devices – such as micro-USB – be used, avoiding the need for additional dedicated video output sockets.[199] The USB port switches to MHL mode when it detects a compatible device is connected.

In addition to the features in common with HDMI (such as HDCP encrypted uncompressed high-definition video and eight-channel surround sound), MHL also adds the provision of power charging for the mobile device while in use, and also enables the TV remote to control it. Although support for these additional features requires connection to an MHL-enabled HDMI port, power charging can also be provided when using active MHL to HDMI adapters (connected to standard HDMI ports), provided there is a separate power connection to the adapter.

Like HDMI, MHL defines a USB-C Alternate Mode to support the MHL standard over USB-C connections.

Version 1.0 supported 720p/1080i 60 Hz (RGB/4:4:4 pixel encoding) with a bandwidth of 2.25 Gbit/s. Versions 1.3 and 2.0 added support for 1080p 60 Hz (Y′CBCR 4:2:2) with a bandwidth of 3 Gbit/s in PackedPixel mode.[197] Version 3.0 increased the bandwidth to 6 Gbit/s to support Ultra HD (3840 × 2160) 30 Hz video, and also changed from being frame-based, like HDMI, to packet-based.[200]

The fourth version, superMHL, increased bandwidth by operating over multiple TMDS differential pairs (up to a total of six) allowing a maximum of 36 Gbit/s.[201] The six lanes are supported over a reversible 32-pin superMHL connector, while four lanes are supported over USB-C Alternate Mode (only a single lane is supported over micro-USB/HDMI). Display Stream Compression (DSC) is used to allow up to 8K Ultra HD (7680 × 4320) 120 Hz HDR video, and to support Ultra HD 60 Hz video over a single lane.[201]

See also[edit]